
Deductive Composition of

Astronomical Software

from Subroutine Libraries �

Mark Stickel and Richard Waldingery

Arti�cial Intelligence Center

SRI International

Menlo Park, CA 94025

Michael Lowry, Thomas Pressburger, and Ian Underwoodz

Arti�cial Intelligence Research Branch

Recom Technologies

NASA Ames Research Center

Mo�ett Field, CA 94035

July 16, 1994

Abstract

Automated deduction techniques are being used in a system called

Amphion to derive, from graphical speci�cations, programs composed

from a subroutine library. The system has been applied to construct

software for the planning and analysis of interplanetary missions.

The library for that application is a collection of subroutines written

in FORTRAN-77 at JPL to perform computations in solar-system kine-

matics. An application domain theory has been developed that describes

�A preliminary version of this appears in the proceedings of the Twelfth International

Conference on Automated Deduction, Nancy, France, June 1994, pages 341-355.
yfstickel,waldingerg@ai.sri.com
zflowry, pressburger,underwoodg@ptolomy.arc.nasa.gov

1

the procedures in a portion of the library, as well as some basic properties

of solar-system astronomy, in the form of �rst-order axioms.

Speci�cations are elicited from the user through a menu-driven graph-

ical user interface; space scientists have found the graphical notation con-

genial. The speci�cation is translated into a theorem, which is proved

constructively in the astronomical domain theory by an automated theo-

rem prover, SNARK. An applicative program is extracted from the proof

and converted to FORTRAN-77. By the method of its construction, the

program is guaranteed to meet the given speci�cation and requires no

further veri�cation, provided, of course, that the speci�cation, domain

theory, and system itself are correct.

Amphion has successfully constructed more than a hundred programs

to solve problems, formulated at NASA Ames, JPL, and Stanford, which

involve typical computations involving the sun, planets, moons, and

spacecraft. The system is currently being alpha tested at JPL.

1 Introduction

Automatic deductive program synthesis has been studied for many years but

has never been used in practice. By restricting our attention to the construction
of programs composed from subroutine libraries, rather than the primitive in-
structions of a programming language, and by adapting domain-speci�c control
strategies, we have applied deductive methods to construct useful software.

Subroutine Libraries

Subroutine libraries are one of the most prevalent forms of software reuse, par-
ticularly within the scienti�c programming community. However, end users

often do not make e�ective use of libraries. Sometimes this happens because

the subroutines are not adequately documented. But even when excellent doc-
umentation is provided, users often have neither the time nor the inclination

to familiarize themselves with it. In either case, the result is that most users
lack the expertise to properly identify and compose the routines appropriate to

their application. In domains with mature subroutine libraries, one can greatly

improve the productivity and quality of software engineering by automating the
e�ective use of those libraries.

Subroutines are commonly accessed by indexing key words in their documen-

tation, a very approximate method. In the work of Rollins and Wing [RW 91],

2

logic programming techniques are invoked to retrieve appropriate subroutines,

according to their speci�cations, but composing them is left up to the user.

In this work, deductive methods|that is, methods of automated reasoning or

theorem proving|are applied to the composition of subroutines into software.

In that sense it most closely resembles the work of Tyugu and his associates

[Tyu 88], in which software is also composed from subroutine libraries, to meet

speci�cations expressed in intuitionistic propositional logic.

Although deductive methods are independent of the application domain, we

discuss their application to the construction of software for performing com-

putations in solar-system astronomy. Such computations are necessary in the
planning and data analysis for interplanetary scienti�c missions. For example,
observing the location of a moon of a nearby planet is often the best way of
determining the position of the observing spacecraft.

Amphion

The Intelligent Software Project of the Arti�cial Intelligence Research Branch
at NASA Ames, led by Michael Lowry, has been developing a system called
Amphion1 to automate the composition of software from subroutine libraries.
Software requirements are speci�ed in a graphical notation. An interactive
interface, which is domain-independent but employs the vocabulary of the do-

main, presents the user with a menu of alternatives and elicits the speci�cation
gradually. The user need not know the contents of the library, the syntax of
the speci�cation language, or the target programming language.

The graphical speci�cation is translated automatically into a �rst-order-logic
theorem, and a program is developed from the logical form of the speci�cation

using SRI's automated deduction system snark, which has been implemented
by Mark Stickel. The resulting program is subjected to common-subexpression

elimination and translated into fortran-77. The translation package invokes

Re�netm transformations from Kestrel's kids system [Smi 90]. It would be a
relatively small change to produce a �nal program in a language other than

fortran.

Spice

Amphion's �rst application domain is software for planning and interpreting

space-science observations. The software is based on spicelib, a library of

1Amphion built a wall around Thebes by charming the stones into place with a magic lyre.

3

procedures for solar-system geometry. These routines, written in fortran-77

at the Navigation Ancillary Information Facility (NAIF) at JPL, perform ba-

sic computations involving the sun, planets, moons, and spacecraft. Various

systems of time measurement (e.g., ephemeris time, which is used in astronom-

ical tables, and spacecraft clock time) and multiple frames of reference come

into play. Light is not assumed to travel instantaneously across astronomical

distances.

The NAIF library procedures are used by astronomers and researchers as

primitives to build more complex software. The subroutines embody consider-

able expertise and cannot easily be recreated. Although the routines are well
documented, users seem reluctant to invest the time and e�ort to learn about
them. They frequently attempt to reimplement routines that already exist in
spicelib because they did not �nd them in the documentation, or if they are

su�ciently inuential, they prevail on the authors of the library to retrieve the
appropriate routines and compose them into the required software.

2 Deductive Component

The emphasis of this paper is on the role of snark, the deductive subsystem,
in Amphion. Other papers will focus on the astronomical aspects of the system
and on the graphical interface.

Deductive Approach

A program is developed from the logical form of the speci�cation by a deductive
approach, which is based on work of Zohar Manna, of Stanford University, and

Richard Waldinger [MW 92]. We prove a mathematical theorem that expresses

the existence of an output that meets the speci�ed conditions. The graphical
speci�cation language corresponds to only a subset of predicate logic, but in

principle knowledgeable users can introduce logical speci�cations directly.
The proof is conducted in a classical logic but is restricted to be construc-

tive|in other words, in proving the existence of the required output, we are
forced to indicate a method for �nding it. That method becomes the ba-

sis for a program to compute the output, which may be extracted from the
proof. This program is guaranteed, by the way it was constructed, to meet the

speci�cation|it requires no further veri�cation.

The structure of the program reects the proof from which it was extracted.

4

If the proof relies on reasoning by cases (e.g., by application of the resolution

rule [Rob 65]), the resulting program may contain a conditional expression. If

the proof depends on the mathematical induction principle, the program may

invoke recursion or other repetitive constructs.

The theorem is proved valid in an application domain theory that provides

the knowledge on which the software depends. The speci�cations of the avail-

able subroutines, the constructs of the speci�cation language, and properties

of the application domain are expressed by axioms in the domain theory. The

application domain theory also determines the options o�ered to the user by

the graphical interface.
Program synthesis di�ers in its technical emphasis when its output is ex-

pressed in terms of subroutine calls rather than the primitives of a programming
language. When most of the recursive and iterative constructs are embedded in

subroutines, the major technical challenge is to e�ectively decompose the prob-
lem and glue together subroutines. While general program synthesis imposes
severe demands on a deductive system, the theorems that arise when software
is composed from a subroutine library appear to be within the range of existing
deductive technology.

Snark

To automate a deductive approach requires an automated deduction system,
or theorem prover. Snark is especially suitable for program synthesis and

other applications in arti�cial intelligence and software engineering. Snark is
invoked as a subsystem of Amphion, but it can also be used independently or
as a component of other systems.

The current implementation of snark, in common lisp, includes the reso-

lution [Rob 65] and paramodulation [WR 69] rules for handling the constructs

of �rst-order logic with equality, like McCune's otter [McC 90]. It also will
employ the principle of mathematical induction, like Boyer and Moore's nqthm

[BM 88]. Proofs are developed within Manna and Waldinger's deductive tableau
framework [MW 93] and can be restricted to be constructive so that programs

can be extracted. Clause form is optional|if the user prefers, formulas may

employ a full set of logical connectives in arbitrary form.
It is intended that the snark user will be able to introduce new inference

rules, but in the current implementation the user chooses among a �xed set of

rules. An indexing mechanism allows the system to retrieve from its memory

only those formulas that are syntactically relevant.

5

Snark (like otter) is agenda-driven|it draws conclusions from a formula

when that formula reaches the top of its agenda. The user does have the ability

to inuence the strategy adopted by the system, for example, by providing

the function used to order the agenda. Although interactive handles are being

attached to snark, the system is fundamentally automatic.

3 The Astronomical Domain

For the astronomical application, the speci�cations of a portion of the sub-

routines of the spicelib library are represented by axioms in the application
domain theory. Other axioms describe properties of the speci�cation constructs
and the geometry and space kinematics on which the construction of the soft-
ware depends. At this moment the domain theory consists of more than 200
axioms, all of which are available when we attempt to prove the speci�cation

theorem. It is beside the point of this paper to describe the domain theory
(largely the work of Lowry and Pressburger) in any detail. But let us present
enough of the theory to suggest its contents.

The Astronomical Domain Theory

A fundamental entity in the domain theory is a space-time location (sometimes
called an event), a position in space at a certain time; for two events to be

identical, they must correspond to the same position and time.
The relation lightlike? (e1; e2) holds if a photon could leave the position cor-

responding to event e1, at the time corresponding to that event, and arrive
at the position and time corresponding to event e2; the symbol lightlike? is a

speci�cation construct, not a subroutine in the library.

The function ephemeris-object-and-time-to-event yields an event correspond-
ing to the position of a given astronomical object (e.g., a planet or spacecraft) at

a given time; this is also a speci�cation concept. Objects and times are abstract
entities, independent of any representation system for designating astronomical

objects or units for measuring time.

The speci�cation function a-sent (o,d,ta) computes the time a photon must
leave the origin object o in order to arrive at the destination object d at time
ta. This function is de�ned in part by the axiom lightlike?-of-a-sent :

(all (o d ta)

(lightlike? (ephemeris-object-and-time-to-event o

6

(a-sent o d ta))

(ephemeris-object-and-time-to-event d ta)))

(The axioms and theorems are written in lisp notation, e.g., (a-sent o d ta)

instead of a-sent (o,d,ta).) In other words, a photon could leave object o at time

(a-sent o d ta) and arrive at object d at time ta.

The speci�cation constructs deal mainly with abstract entities. But each

abstract entity corresponds to one or more concrete entities, which depend on a

particular representation scheme or system of units. In particular, an abstract

astronomical body such as Jupiter is assigned a NAIF library symbol, called its
NAIF id; the NAIF id of Jupiter is 599. Each abstract time corresponds to a
concrete ephemeris time and to a concrete spacecraft clock time. The function
abs(fn,c) is used to denote the abstract entity corresponding to the concrete
entity c; here, fn is the abstraction function that maps concrete entities into

abstract ones. (For technical reasons, abstraction functions are rei�ed; that is,
they are denoted by constants and terms rather than by function symbols.) For
example, (abs ephemeris-time-to-time et) stands for the abstract time cor-
responding to the ephemeris time et, and (abs naif-id-to-body 599) stands
for Jupiter.

The subroutines in the library apply to concrete entities, not abstractions.
For example, the subroutine (sent onid dnid eta) is analogous to the ab-
stract function (a-sent o d t) but applies to concrete NAIF ids for origin and
destination bodies, onid and dnid, respectively, and a concrete arrival time eta
in ephemeris-time units, rather than their abstract counterparts. The precise

relationship between the speci�cation function a-sent and the subroutine sent
is expressed by the following a-sent-to-sent axiom:

(all (onid dnid eta)

(= (a-sent (abs naif-id-to-body onid)

(abs naif-id-to-body dnid)

(abs ephemeris-time-to-time eta))

(abs ephemeris-time-to-time (sent onid dnid eta)))).

In other words, the result of �rst translating the concrete entities into abstrac-
tions and then computing a-sent is the same as the result of computing sent

on the concrete entities and then translating to abstract time.

7

Figure 1: Where is the shadow of Io on Jupiter?

The Sample Problems

With the assistance of astronomers at JPL and Stanford, and based on his own
experience, Underwood assembled a collection of �fteen sample problems rep-
resentative of what might be requested of a NAIF consultant. The problems
require solar-system computations typical of those required for scienti�c mis-

sions; some were from software that had been developed for the Hubble Space
Telescope Science Institute. Although a NAIF expert would be able to construct
programs to solve these problems in less than half an hour, NAIF experts are
in short supply; a programmer unfamiliar with the NAIF library might require
several days to learn its contents before composing the software.

Amphion was able to construct programs for all �fteen sample problems
completely automatically, without user interaction. Once the speci�cations were
elicited from the user, the system required less than three minutes to construct
each program.

Let us look at one of the sample problems.

Shadow of Io

The �rst problem we considered involved determining the location of the shadow
cast on Jupiter by its moon Io, as observed at a given time on Voyager 2
(Figure 1). The point pi indicates the shadow.

The corresponding graphical speci�cation (Figure 2) may appear confusing,

but would be much clearer if we could show the step-by-step interaction between
user and system. After a one-hour tutorial, a novice user may require a half

hour to construct such a speci�cation; an experienced user can do it in a few
minutes.

In Figure 2, PHOTON-SUN-IO designates a photon that passes from the

sun at a certain time and reaches Io at another; the purpose of speaking about
photons is to specify times. Similarly PHOTON-IO-JUPITER is perhaps the

8

Figure 2: Shadow of Io Graphical Speci�cation

same photon as it leaves Io and reaches Jupiter, and PHOTON-JUPITER-
VOYAGER-2 is the photon as it leaves Jupiter and arrives at Voyager 2. The
input to the program (indicated at the lower right) is the time that photon
reaches Voyager 2.

RAY-SUN-to-IO is a ray (that is, a half-in�nite line) that originates at the

sun and passes through Io. JUPITER-ELLIPSOID is the surface of Jupiter
at the time the photon reaches Jupiter; because Jupiter rotates and moves, its
surface changes with time. SHADOW-POINT, the output of the program, is
the �rst intersection of the ray with the surface of Jupiter.

The reader may observe that the user has chosen certain simpli�cations and

approximations in specifying this problem. For instance, the sun and Io are
regarded as points, and though Jupiter is sometimes regarded as a spheroid,

PHOTON-IO-JUPITER arrives at the center of Jupiter, not its surface. The
decision as to which simpli�cations may be made is left up to the user.

The theorem obtained from this speci�cation is given in Figure 3.

(all (time-voyager-2-c)

(find (shadow-point-c)

(exists

9

(time-sun sun-spacetime-loc time-io io-spacetime-loc

time-jupiter jupiter-spacetime-loc time-voyager-2

voyager-2-spacetime-loc shadow-point jupiter-ellipsoid

ray-sun-to-io)

(and

(= ray-sun-to-io

(two-points-to-ray

(event-to-position sun-spacetime-loc)

(event-to-position io-spacetime-loc)))

(= jupiter-ellipsoid

(body-and-time-to-ellipsoid jupiter

time-jupiter))

(= shadow-point

(intersect-ray-ellipsoid ray-sun-to-io jupiter-ellipsoid))

(lightlike? jupiter-spacetime-loc voyager-2-spacetime-loc)

(lightlike? io-spacetime-loc jupiter-spacetime-loc)

(lightlike? sun-spacetime-loc io-spacetime-loc)

(= voyager-2-spacetime-loc

(ephemeris-object-and-time-to-event voyager-2 time-voyager-2))

(= jupiter-spacetime-loc

(ephemeris-object-and-time-to-event jupiter time-jupiter))

(= io-spacetime-loc

(ephemeris-object-and-time-to-event io time-io))

(= sun-spacetime-loc

(ephemeris-object-and-time-to-event sun time-sun))

(= shadow-point (abs (coords-to-point j2000) shadow-point-c))

(= time-voyager-2

(abs ephemeris-time-to-time time-voyager-2-c))))))

Figure 3: Shadow of Io Theorem

The quanti�er find is a constructive version of the existential quanti�er
exists; in proving the existence of shadow-point-c (which corresponds to

SHADOW-POINT in the graphical speci�cation), the system is forced to indi-

cate a method for �nding it.
Although this and the other theorems required for the astronomical applica-

tion are not mathematically deep, some of the authors of this paper will confess

10

to being unable to prove them from the axioms by hand. Snark required about

40 seconds (on a Sun 670MP) to prove this one. The program extracted from

the proof, as translated by Amphion into fortran-77, is given in Figure 4.

SUBROUTINE SHADOW (TIMEVO, SHADOW)

C Input Parameters

DOUBLE PRECISION TIMEVO

C Output Parameters

DOUBLE PRECISION SHADOW (3)

C Function Declarations

DOUBLE PRECISION SENT

C Parameter Declarations

INTEGER JUPITE

PARAMETER (JUPITE = 599)

INTEGER VOYGR2

PARAMETER (VOYGR2 = -32)

INTEGER SUN

PARAMETER (SUN = 10)

INTEGER IO

PARAMETER (IO = 501)

C Variable Declarations

DOUBLE PRECISION RADJUP (3)

DOUBLE PRECISION TJUPIT

DOUBLE PRECISION PJUPIT (3)

DOUBLE PRECISION TIO

DOUBLE PRECISION MJUPIT (3, 3)

DOUBLE PRECISION PIO (3)

DOUBLE PRECISION TSUN

DOUBLE PRECISION PSUN (3)

DOUBLE PRECISION DPSPI (3)

DOUBLE PRECISION DPJPS (3)

DOUBLE PRECISION XDPSPI (3)

11

DOUBLE PRECISION XDPJPS (3)

DOUBLE PRECISION P (3)

DOUBLE PRECISION DPJUPP (3)

C Dummy Variable Declarations

INTEGER DMY0

DOUBLE PRECISION DMY20 (3)

DOUBLE PRECISION DMY30 (3)

DOUBLE PRECISION DMY40 (3)

LOGICAL DMY90

CALL BODVAR (JUPITE, 'RADII', DMY0, RADJUP)

TJUPIT = SENT (JUPITE, VOYGR2, TIMEVO)

CALL FINDPV (JUPITE, TJUPIT, PJUPIT, DMY20)

CALL BODMAT (JUPITE, TJUPIT, MJUPIT)

TIO = SENT (IO, JUPITE, TJUPIT)

CALL FINDPV (IO, TIO, PIO, DMY30)

TSUN = SENT (SUN, IO, TIO)

CALL FINDPV (SUN, TSUN, PSUN, DMY40)

CALL VSUB (PIO, PSUN, DPSPI)

CALL VSUB (PSUN, PJUPIT, DPJPS)

CALL MXV (MJUPIT, DPSPI, XDPSPI)

CALL MXV (MJUPIT, DPJPS, XDPJPS)

CALL SURFPT (XDPJPS, XDPSPI, RADJUP (1), RADJUP (2),

.RADJUP (3), P, DMY90)

CALL VSUB (P, PJUPIT, DPJUPP)

CALL MTXV (MJUPIT, DPJUPP, SHADOW)

END

Figure 4: Shadow of Io Program

Again there is little point to reading the entire program; we printed it to em-

phasize the di�erence between the program and its speci�cation. After the long
sequence of declarations and initializations, the program invokes the spicelib

procedure bodvar, which computes the radii of Jupiter; because the surface of

Jupiter is an ellipsoid, it has three radii, which are stored in an array. Then

the library function sent computes the time tjupit a photon must have left

12

Jupiter to reach Voyager 2 at input time timev0. The procedures findpv

and bodmat then compute the position and the orientation of Jupiter at time

tjupit. The orientation of Jupiter is represented by a three-by-three matrix of

double-precision numbers. And so on.

In short, the speci�cation deals with abstract entities, such as planets, times,

and ellipsoids; the program deals with integers, double-precision numbers, and

matrices.

4 Strategic Considerations

We do not provide a systematic description of snark here, but we do describe
some of the heuristic features that snark employed to solve the astronomical

problems.

Recursive Path Ordering

Snark employs term rewriting and the paramodulation rule [WR 69] for rea-

soning about equality. It has been found possible to avoid replacing one term
with another if the second term is greater than the �rst with respect to a cer-
tain kind of ordering, a recursive-path ordering [Der 82]. The recursive-path
orderings are syntactic relations de�ned on the terms of our language. Snark
allows the user to declare a recursive-path ordering before beginning a proof.

The user provides an ordering on the constants and function symbols of the
language, and that determines a corresponding ordering on the terms, which
is used to control the paramodulation rule. It has been established [HR 91]
that the recursive-path-ordering strategy is complete for �rst-order logic with

equality. If a sentence has a proof, it can be proved with the strategy, regardless

of the choice of ordering.
Snark's success in this domain depends on its use of the recursive-path-

ordering strategy and on the choice of a particular ordering. Indeed, there are
examples in which snark found a proof in less than a minute with a plausible

ordering, but failed to �nd a proof in a reasonable time if that ordering was
reversed or if ordering information was omitted altogether.

We found that a good heuristic for ordering the terms was, roughly speaking,
to direct snark to replace abstract, noncomputable symbols with concrete,

computable ones, which could appear in the �nal program extracted from the

proof. With little e�ort, it was possible to declare an ordering that would enable

13

snark to construct a program. A single ordering su�ced for all the problems

in the astronomical domain. In general, we do not expect Amphion users to

have to supply a recursive path ordering|that is done when the application

domain theory is formulated.

The Spice Agenda-Ordering Function

We have remarked that Snark is an agenda-driven theorem prover. When it

infers a new formula, it places it on an agenda, a list of formulas, to wait its

turn to be processed. A formula is not processed until it reaches the head of the
agenda; then it is removed from the agenda and all its immediate consequences
are added.

The place at which a new formula is added to the agenda is determined by

the agenda-ordering function. Although a default agenda-ordering function is
provided with the system, the snark user may choose another or provide a new
one, written in common lisp. One of the ways snark has been specialized to
the astronomical domain is with a new spice agenda-ordering function, writ-
ten by Pressburger. This strategy gives special attention to goals with literals

containing the predicate symbol lightlike? for which one of the arguments
is ground (variable-free) and the other contains a variable; there are axioms in
the domain theory, such as the axiom lightlike?-of-a-sent given previously, that
are capable of solving any such literals. To a lesser extent, the strategy favors
goals with fewer abstract function symbols. The e�ect of this strategy is to �rst

determine the space-time locations of all the bodies in the problem, and then to
replace all the abstract function symbols with concrete ones, which correspond
to spicelib routines.

The choice of agenda-ordering function can be critical. One problem we
have encountered requires less than three minutes with the spice agenda or-

dering but more than an hour with the snark default agenda ordering. All the
astronomical problems were solved with this same spice agenda ordering; we

do not expect Amphion users to have to change this ordering.

The Set-of-Support Strategy

The mathematical applications on which theorem provers are commonly tested
require relatively deep proofs in theories with few axioms. In contrast, the
astronomical domain, like most software-engineering applications, requires us

to �nd mathematically less sophisticated proofs in theories with a large number

14

of axioms, which represent the subject knowledge of the domain. For such a

problem, it is appropriate to invoke the set-of-support strategy [WRC 65] to

focus attention on the goal|the theorem to be proved|at the expense of the

axioms. This strategy requires that every formula we infer be descended from

the goal. Otherwise, with so many axioms, it is hard to decide in advance which

of them are relevant to the proof. In fact, the set-of-support strategy turned out

to be crucial in the astronomical domain|theorems that are proved in under a

minute with set of support cannot be proved within the available space without

it.

When we employ the set-of-support and the recursive-path-ordering strat-
egies at the same time, however, we lose completeness|there may be some
valid theorems we will be unable to prove without violating the restrictions of
one of the strategies. (In fact, once we combine the recursive-path-ordering

strategy with the constructiveness restriction, which guarantees that we can
extract programs from proofs, we may already have lost completeness.) The
domain theory contains some logically redundant axioms to circumvent this
incompleteness, but this is something of a stopgap measure. In the future,
a hybrid strategy that allows some reasoning forward from axioms and some

reasoning backward from the goal may be employed in combination with the
recursive-path-ordering strategy.

5 Performance

Since the test cases were run, demonstrations of Amphion have been given
by Lowry at NASA Ames, JPL, and other sites. Members of the audience

unfamiliar with the system were invited to specify their own programs. In
almost all cases, the graphical notation was adequate to specify the new program
and snark was capable of proving the corresponding theorem and constructing

the speci�ed program.

In all our test cases, including those proposed by participants in NASA and
JPL demonstrations, the speci�cation has been formulated in less than half

an hour; an experienced Amphion user needs just a few minutes. It is often
more convenient to revise the stored speci�cation of a similar problem than to

construct a new speci�cation from scratch. The theorems have required less

than ten minutes|usually less than three minutes|for snark to prove, and
the translation into fortran is completed in seconds.

For one problem, the desired program relied on properties of subroutines in

15

spicelib that had not yet been axiomatized. It required less than half an hour

to introduce the new axioms; the system was then able to construct the new

program.

Once snark has found one proof and extracted the corresponding program,

we can restart it to �nd other proofs and perhaps other programs. This ability

is not used by Amphion, because we have not found that the various programs

di�ered in any signi�cant way; they were doing more or less the same things in

di�erent orders.

The system has recently been installed at NAIF so that JPL astronomers

can use the system regularly, on an experimental basis.

6 What Next?

The problems solved so far have been relatively simple, none requiring more
than two of three pages of fortran code and none including if-statements or
loops, except implicitly at the subroutine level. While snark does regularly
introduce conditionals, for example by application of the resolution rule, its

ability to introduce iterative or recursive constructs is rudimentary. It currently
contains no induction rule, so we must provide the appropriate well-founded
relation, on which the induction is based, and enter the induction hypothesis
as an axiom. Although none were encountered in the sample problem set or
in demonstrations, there are problems in the domain that do require iterations

that cannot be relegated to subroutines. When we do employ induction, it may
be advisable to use a nonclausal representation of formulas; so far, all formula
have been kept in clausal form.

For more complex problems, it will be necessary to decompose the speci�ca-
tion into subspeci�cations of more manageable modules. Simple decompositions
might be achieved automatically, with the help of tactics that could be built into

snark itself. Other decompositions will be performed interactively through the

graphical interface. In this way, the user would specify the original problem and
its decomposition into modules with the same mechanism.

Once snark has successfully constructed a module, its speci�cation can be
added to the theory as a new axiom. If that axiom is used in a proof, the module

will be invoked by the corresponding program. Thus, if the decomposition is

done appropriately, snark will be able to compose the modules to solve the
main problem. Whether the decomposition is accomplished automatically or

with user assistance, the correctness of the resulting program and its modules

16

is guaranteed by the method of their construction, provided that the domain

theory is correct.

Nothing in the techniques we are using restricts us to spicelib or to the

astronomical domain. We are currently considering other application domains

in which the same technology would be valuable. Characteristic of a potentially

fruitful domain are the existence of a mature subroutine library, many of whose

users are imperfectly acquainted with its contents. Deductive methods are

particularly attractive when the correctness of the derived software is critical.

In such a domain, it is plausible that existing deductive technology will su�ce

to give computationally naive users access to a large library of subroutines and
enable them to compose software of practical power and high reliability.

Acknowledgements

We would like to thank the National Science Foundation for support of some of
this research, under Grant CCR-8922330.

References

[BM 88] R. S. Boyer and J S. Moore, A Computational Logic Handbook, Aca-
demic Press, Boston, MA (1988).

[Der 82] N. Dershowitz, Orderings for Term-Rewriting Systems, Journal of
Theoretical Computer Science, 17,3 (1982), 279-301.

[HR 91] J. Hsiang and M. Rusinowitch, Proving Refutation Completeness

of Theorem-Proving Strategies: The Trans�nite Semantic Tree
Method, Journal of the ACM, 38,3 (1991), 559-587.

[McC 90] W. McCune, Otter 2.0 User's Guide, Technical Report ANL-90/9,

Argonne National Laboratory, Argonne, IL (1990).

[MW 92] Z. Manna and R. Waldinger, Fundamentals of Deductive Program
Synthesis, IEEE Transactions on Software Engineering, 18,8 (1992),

674{704.

[MW 93] Z. Manna and R. Waldinger, Deductive Foundations of Computer

Programming, Addison-Wesley, Reading, MA (1993).

17

[Rob 65] J. A. Robinson, A Machine-Oriented Logic Based on the Resolution

Principle. Journal of the ACM 12 (1965) 23{41.

[RW 91] E. J. Rollins and J. M. Wing, Speci�cations as Search Keys for

Software Libraries, Eighth International Conference on Logic Pro-

gramming, Paris, June 1991.

[Smi 90] D. R. Smith, KIDS: A Semiautomatic Program Development Sys-

tem. IEEE Transactions on Software Engineering 16,9 (1990) 1024{

1043.

[Tyu 88] E. H. Tyugu, Knowledge-Based Programming, Turing Institute
Press, Glasgow, Scotland, 1988.

[WR 69] L. Wos and G. Robinson, Paramodulation and Theorem Proving in
First-Order Theories with Equality. In B. Meltzer and D. Michie

(editors), Machine Intelligence 4, American Elsevier, New York, NY
(1969) 135{150.

[WRC 65] L. Wos, G. A. Robinson, and D. F. Carson, E�ciency and Complete-

ness of the Set-of-Support Strategy in Theorem Proving. Journal of
the ACM, 12,4 (1965), 536{541.

18

